APPENDIX
A DETAILS ON UVD
1. Decomposition

As we show in Algo. 1, UVD preprocesses the demonstra-
tion or user-provided raw video offline. We further provide
low-level pseudocode in Python of UVD in Pseudocode. A.1.
In practice, when identifying the temporally nearest obser-
vation where the monotonicity condition is not met, as per
Eq. 3, it is equivalent to locating the most recent local
maximum of the embedding distance curves. This is because
the distance curve is anticipated to show an almost mono-
tonically decreasing trend towards the final frame in each
recursive iteration, as shown in Eq. 2. Due to the small-scale
noise in pixel and high-dimensional feature space, we apply
Nadaraya-Watson Kernel Regression [55] to first smooth
the embedding curves before calculating the embedding
distances. We benchmark our UVD implementation runtime
in Appendix. A4., which shows a negligible time span,
even when handling high-resolution videos with substantial
duration in the wild.

from scipy.signal import argrelextrema

def UVD (
embeddings: np.ndarray
smooth_fn: Callable,
min_interval: int = 18,
) —> list[int]:
# last frame as the last subgoal
cur_goal_idx = -1
# saving (reversed) subgoal indices
goal_indices = [cur_goal_idx]
cur_emb = embeddings.copy () # L, d
while cur_goal_idx > min_interval:
# smoothed embedding distance curve
d = norm(cur_emb - cur_emb[-1],
d = smooth_fn (d)
# monotonicity breaks (e.g. maxima)
extremas = argrelextrema(d, np.greater) [0]
extremas = [
e for e in extremas
if cur_goal_idx - e > min_interval

| torch.Tensor,

(timesteps)

(L,)
axis=-1)

1
if extremas:
# update subgoal by Eqg. (3)
cur_goal_idx = extremas[-1] - 1
goal_indices.append(cur_goal_idx)
cur_emb = embeddings|[:cur_goal_idx + 1]
else:
break
return embeddings |
goal_indices[::-1] # chronological

]

Pseudocode A.1: UVD implementation in Python

In all of our simulation and real-world experiments, we
use min_interval = 18, and Radial Basis Function
(RBF) with the bandwidth of 0.08 for Kernel Regression,
to eliminate most of the visual and motion noise in the
video. We provide UVD decomposition qualitative results
in Appendix. F.

2. Inference

We now elucidate the specifics of applying UVD subgoals
in a multi-task setting during inference. Remember that given

a video demonstration represented as 7 = (0, - -+ ,or) and
UVD-identified subgoals Tgoa1 = (g0, - ,gm), We can ex-
tract an augmented trajectory labeled with goals, represented
as Taug = (0a,@0,90), "+ , 0T, T, gm. This is useful for
goal-conditioned policy training, as discussed in Sec. [V-B.

For inference, we can similarly produce an augmented
offline trajectory without the necessity of ground-truth ac-
tions, i.e., Tqug,infer = {(00,90); -, (0T, gm)}. In the
online rollout, after resetting the environment to op, the
agent continuously predicts and enacts actions conditioned
on subgoal gop using the trained policy. This continues until
the embedding distance between the current observation and
the subgoal surpasses a pre-set positive threshold e at a
specific timestep i, i.e. dy(0;;g0) < €, where ¢ is the same
frozen visual backbone used in decomposition and training.
Following this, the subgoal will be seamlessly transitioned
to the next, continuing until success or failure is achieved.

In practice, the straightforward goal-relaying inference
method might face accumulative errors during multiple sub-
goal transitions, especially due to noise from online rollouts.
However, when an agent is guided explicitly by tasks de-
picted in a video, incorporating the duration dedicated to
each subgoal can help reduce this vulnerability. To clarify,
once we’ve aligned subgoals with observations from the
video, we also draw a connection between the timesteps of
observations and their corresponding subgoals. We denote
the subgoal budget for subgoal g; = o, as By, := n +1
where g;_1 = 0;—,—1 based on Eq. 3. Building on this, we
propose a secondary criterion for switching subgoals: verify
if the relative steps completing the current stage is in the
neighborhood of the subgoal budget. This measure ensures
timely transitions: it avoids prematurely switching before
completing a sub-stage or delaying the transition despite
accomplishing the sub-stage in the environment. To sum up,
given an ongoing observation o; and subgoal g; at timestep
t, and considering the preceding subgoal g;_; at timesteps
t — h, the subgoal will transition to g; if

|h — Bg,| < ¢ (5)
We use € = 0.2 and § = 2 steps for all of our experiments,

except in baseline tests that are conditioned solely on final
goals.

dy(o4;9;) < e and

3. Feature Continuity

We then visualize 3D t-SNE in feature space from different
frozen visual backbones in Fig. A.1. We include VIP [32],
R3M [38], CLIP [44], and ResNet [18] trained for ImageNet-
1k classification [9]. As shown in Fig. A.l, representa-
tions pretrained with temporal objectives, e.g. VIP [32] and
R3M [38], provide more smooth, continuous, and monotone
clusters than other vision foundation models. In practice,
those representations with more smooth and continuous
embedding curves provide better UVD decomposition as
well as better performance in downstream control.

4. Runtime of UVD

Finally, We present the average runtime of UVD for
preprocessing and decomposing trajectories. We break the



UVD Subgoals

VIP

R3M

CLIP

ResNet b @ o \M}\’g‘ Y}\
(ImageNet) e ,_ B

\ "‘i“\g [ ¥ a9 &

AT

) T
= \W
3 - X l?

BN

Fig. A.1: UVD subgoals and 3D t-SNE visualizations of different frozen visual embeddings. t-SNE colors are labeled
by UVD subgoals. Representations pretrained with temporal objectives like VIP [32] and R3M [38] provide more smooth,
continuous, and monotone clusters in feature space than others, whereas the ResNet trained for supervised classification on

ImageNet-1k [9] provide the most sparse embeddings.

runtime by: 1) load from raw video file into an array; 2)
preprocess the video array by the frozen visual encoder
(including the tensor and device conversions); and 3) apply
UVD to the preprocessed embeddings. In addition to the
FrankaKitchen dataset and real-world data used for our
experiments, we assessed the decomposition capabilities on
a 720P MOV video. The video has a frame rate of 30 fps,
contains 698 frames (equating to a duration of 23.3 seconds),
and is decomposed into 16 subgoals. Visualizations can be
found in Fig. F.15. Runtimes were calculated based on an
average of 513 episodic data from the FrankaKitchen dataset
and 100 trials for the in the wild video, all processed
on an RTX A6000 GPU. Preprocessing is required only once
offline before the policy training. As indicated in Tab. A.1,
UVD operates in a negligible time span, even when handling
high-resolution videos with substantial duration in the wild.

| # frames | Load Preprocess UVD
FrankaKitchen 226.9 0.023 0.155 0.0023
In the wild 698 1.011 0.450 0.011

TABLE A.1: UVD offline preprocess runtimes (in sec-
onds).

B MODELS

1. Policies

To underscore that our method serves as an off-the-shelf
method that is applicable to different policies, we ablate with
a Multilayer Perceptron (MLP) based single-step policy and a
GPT-like causal transformer policy. We summarize the MLP
and GPT policies hyperparameters in Tab. C.4 C.5. The MLP
policy, akin to the designs in [32,38] for downstream control
tasks, employs a 3-layer MLP with hidden sizes of [1024,
512, 256] to produce deterministic actions. This MLP ingests
a combination of the frozen visual embeddings from step-
wise RGB observations and goal images followed by a 1D
BatchNorm, as well as the 9D proprioceptive data encoded
through a single layer complemented by a LayerNorm.

Our GPT policy removes the BatchNorm and replaces the
MLP with the causal self-attention blocks consisting of 8
layers, 8 heads, and an embedding dimension of 768. We
set an attention dropout rate of 0.1 and a context length of
10. The implementation is built upon [23,56]. We transition
from the conventional LayerNorm to the Root Mean Square
Layer Normalization (RMSNorm) [63] and enhance the
transformer with rotary position embedding (RoPE) [53].
Actions are predicted via a linear similar to [5]. In practice,
we generally found this recipe has more stable training
and better performance than the original implementation
from [23,48]. At inference time, we cache the keys and



values of the self-attention at every step, ensuring that there’s
no bottleneck as the context length scales up. Nevertheless,
in the FrankaKitchen tasks, we observed that a longer context
length tends to overfit and performance drop. Therefore, we
consistently use a context length of 10 for all experiments.

Policy | MLP MLP + UVD GPT GPT + UVD
Episodic Runtime \ 6.03 6.17 7.43 7.50

TABLE B.2: Benchmark the inference runtime (in sec-
onds). Runtimes are averaged across 100 rollouts with one
GPU process and episodic horizon 300.

C TRAINING DETAILS
1. Imitation Learning

We summarize the hyperparameters of imitation learning
in Tab. C.3. In the simulation, we conduct an online eval-
uation every 100 epochs using 10 parallel environments for
each GPU machine. We choose the best checkpoints based on
the combined IND and O0OD performance, averaged across
all multi-task training scenarios. For benchmarking inference
time, we employ a single GPU, comparing our approach
with the GCBC baseline as shown in Tab. B.2. This further
underscores that UVD incurs negligible overhead throughout
the preprocessing, training, and inference stages.

2. Reinforcement Learning

All RL experiments are trained using the Proximal Policy
Optimization (PPO) [46] RL algorithm implemented within
the AllenAct [58] RL training framework. We summarize the
hyperparameters of reinforcement learning in Tab. C.6.

In our RL setting, the configurations for both training
and inference remain consistent. This is analogous to the
inference for IL as detailed in Appendix. A2.. Specifically,
the task is also specified by an unlabeled video trajectory
7. Given the initial observation oy and UVD subgoal gg €
Tgoal» the agent continuously predicts and executes actions
conditioned on subgoal gg using the online policy with frozen
visual encoder ¢, until the condition dy(0s; go) < € satisfied
for some timestep ¢ and positive threshold e.

As shown in Eq. 4, we provide progressive rewards
defined as goal-embedding distance difference using UVD
subgoals. Recognizing that the distance between consecutive
subgoals can vary, we employ the normalized distance func-
tion: dy(04;9:) := dy(0s; 9i)/dy(gi—1; g;). This ensures that
d_¢(0t,h;gi) ~ 1 for some timestep ¢ — h that the subgoal
was transitioned from g;_; to g;. Additionally, we provide
modest discrete rewards for encouraging (chronically) sub-
goal transitions, and larger terminal rewards for the full
completion of task sub-stages, which is equivalent as the
embedding distance between the observation and the final
subgoal becomes sufficiently small. To sum up, at timestep
t, the agent is receiving a weighted reward

Ry =a- (dg(0—1:9:) — dg(01: 9:))
+6- L, (ou590)<e 6)
+7- 1d7¢(0t;9m)<€

based on the RGB observations o;,0;_1, corresponding
UVD subgoal g; € 74041, and final subgoal g, € Tgoai-
While similar reward formulations appear in works such
as [27,28,32,40,65], we are the first in delivering optimally
monotonic implicit rewards unsupervisedly by UVD, derived
directly from RGB features. In our experiments, we use
a =508 =3,7 = 6,e = 0.2, and confine the first term
within the range [—«, o] in case edge cases in feature space.
For the final-goal-conditioned RL baseline, it is equivalent
as g; = gm = or € T = {00, ,or} and § =0 in Eq. 6.

Tab.IT illustrates that the simple incorporation of UVD-
rewards greatly enhances performance. We also showcase a
comparison of evaluation rewards between GCRL and GCRL
augmented with our UVD rewards. This is done using the
R3M [38] and VIP [32] backbones, as seen in Fig. C.2.
This highlights the capability of our UVD to offer more
streamlined progressive rewards. This capability is pivotal
for the agent to adeptly manage the challenging, multi-
stage tasks presented in FrankaKitchen. To the best of our
knowledge, ours is the first work to achieve such a high
success rate in the FrankaKitchen task without human reward
engineering and additional training. Notably, our RL agent,
trained with the optimally monotonic UVD-reward, can
complete 4 sequential tasks in as few as 90 steps — a stark
contrast to the over 200 steps observed in human-teleoperated
demonstrations. This further illustrates the UVD-reward’s
potential to encourage agents to accomplish multi-stage goals
more efficiently. The videos of rollouts can be found on our
website.

Cumulative Rewards

—— GCRL-VIP + Ours
GCRL-VIP

—— GCRL-R3M + Ours

—— GCRL-R3M

Rewards
%) w > o
(=] o o o

—
o

o

0 10 20 30 40 50 60 70
Steps (M)

Fig. C.2: RL evaluation cumulative rewards. Note that
different visual backbones may not be comparable due to dif-
ferent representation spaces, but we show significant progres-
sive signals in comparison with the final-goal-conditioned
baseline.

Failures in the GCRL baselines predominantly stem from
the agent’s tendency to get trapped in local minima, usually
when it achieves a task sub-stage that results in the most
significant visual changes in the feature space, e.g. sliding
the cabinet in this case. Since it causes the most noticeable
shifts both in pixel and feature representations, the baseline
agent often fixates on this subtask alone, making no further
progress. Conversely, when employing UVD subgoals and
rewards, we have observed a marked difference during train-
ing. The agent incrementally learns to navigate the entire
task, approaching it stage by stage. These stages are not



Hyperparameter/Value = MLP-Policy GPT-Policy Hyperparameter Value Hyperparameter Value
Optimizer AdamW [29] AdamW [29] . . Context Length 10
. Hidden Dim. [1024, 512, 256] . >
Lparmng Rate 3e-4 3e-4 Activation ReLU Embedding Dim. 768
Learning Rate Schedule cos decay cos decay Proprio. Hidden dim 512 Layers 8
ey Ster 150k 2000 Proprio. Activation Tanh Embedding Dropout 00
Wei bt Decpa 0.01 0.1 Visual Norm. Batchnorm1d AttentiongDro I())ut 0.1
Bews [0.9,0999]  [0.9, 0.99] Proprio. Norm. LayerNorm Normalization  RMSNorm [63]
Max Gradient Norm . ’l O . i 0. Action Activation Tanh Action Activation Tanh
Batch Size 512 128 Trainable Parameters 3.3M Trainable Parameters 58.6M

TABLE C.3: IL training hyperpa-
rameters

Hyperparameter Value
GPU instances 8x RTX A6000
Environments per GPU 8
Optimizer AdamW [29]
Learning rate 3e-4

Learning rate schedule linear decay

Max gradient norm 0.5
Discount factor ~y 0.99
GAE T 0.95

Value loss coefficient 0.5
Normalized advantages True
Entropy coefficient 0.001
Rollout length 200
PPO epochs 10

Number of mini-batches 1
PPO Clip 0.1

TABLE C.6: RL hyperparameters.

isolated, as they share pertinent information. For example,
UVD breaks down task sequences into phases characterized
by nearly monotonic motions. These can be categorized as
the “hand reaching” or “object interaction” phases. This
shared knowledge framework means that once the agent
masters the initial “hand reaching” phase, subsequent similar
hand-reaching motions become more intuitive to learn and
execute. Nevertheless, we do occasionally observe instances
where applying UVD results in failure. In these cases, the
agent often oscillates its gripper back and forth, seemingly
hacking the reward shaping, which in turn leads to an
irreversible state. We speculate that incorporating supervised
human intervention [52] or unsupervised near-irreversible
detection [65], could address this issue and further enhance
performance.

D EXTENDED EXPERIMENTS AND ABLATIONS
1. Simulation

We present numerical results for ablations from Sec. V-A
in Tab. D.7, with extended comparison with GCBC baselines.
Without surprise, our method consistently outperforms base-
lines in compositional generalization settings, when varying
the dataset size to 5 demonstrations for each FrankaKitchen
task, or adjusting the seen-unseen partitions, which doubles
the count of unseen sequences while halving the number of
seen ones.

In the FrankaKitchen demonstrations, there are 24 task
sequences encompassing 4 subtasks each, translating to 4 or-

TABLE C.4: MLP pol-
icy hyperparameters

TABLE C.5: GPT policy hyperpa-
rameters

1.

0
|
) I | II |
.l
0 .

0.

Score

InD success OoD success InD completion OoD completion

s MLP + UVD MLP + Subtasks = GPT + UVD s GPT + Subtasks

Fig. D.3: Comparison with the decomposition from hu-
man pre-defined

dered object interactions. We further compare GCBC+UVD
with GCBC conditioned on the final frames of each
human-defined subtask in FrankaKitchen, utilizing both MLP
and GPT policies. The main distinction between UVD-
decomposed subgoals and the subgoals for each subtask
is that UVD furnishes milestones emphasizing monotone
motions, while subtasks yield subgoals with oracle semantic
meanings. Both methodologies employ the identical infer-
ence approach as described in Appendix 2., and share
the same tasks partitions from three distinct seeds. The
average successes and subtask completion rates are shown
in Fig. D.3. Surprisingly, even when subgoals from sub-
tasks offer ground-truth semantic meaning (and, notably,
share identical conditioned subgoal frames across different
task sequences), only GPT policy allows for performance
surpassing our method in the OOD setting. In the IND
setting, however, using subgoals from pre-defined sub-tasks
leads to a substantial performance drop for MLP policies.
This decline might be due to potential confusion (e.g. mis-
manipulated top and bottom burners) arising from similar
subgoals when jointly training multiple multi-stage tasks
when utilizing a lightweight, single-step MLP policy.

2. Real-Robot

In the OOD settings, even though we have not achieved
exceptionally high success rates for all of the tasks, we still
managed a completion rate of around or above 50%. This
outcome can be attributed to the fact that policies trained
using our method consistently exhibit the right intent. Instead
of overfitting to the IND settings, they tend to successfully
complete intermediate steps and occasionally face challenges
only at later stages. In contrast, the GCBC baseline always
overfits the IND initial state. For example, in Fold-Cloth
generalization experiments, the baseline still goes to the
corner that is already folded. For more rollout visualizations,



Representation \ Method \ IND success IND completion OOD success OOD completion
VIP (5 demos) GCBC-GPT | 0.409 (0.102) 0.702 (0.066) 0.005 (0.005) 0.285 (0.024)
; GCBC-GPT + Ours | 0.419 (0.027) 0.763 (0.016) 0.13 (0.033) 0.533 (0.026)
VIP (5 demos) GCBC-MLP | 0.668 (0.024) 0.82 (0.035) 0.016 (0.016) 0.208 (0.006)
GCBC-MLP + Ours | 0.643 (0.058) 0.848 (0.028) 0.104 (0.048) 0.458 (0.038)
VIP (8 seen - 16 unseen) GCBC-MLP | 0.724 (0.057) 0.851 (0.036) 0.001 (0.001) 0.102 (0.020)
GCBC-MLP + Ours | 0.717 (0.051) 0.853 (0.048) 0.084 (0.007) 0.497 (0.055)
VIP (8 seen - 16 unseen) GCBC-GPT | 0.602 (0.114) 0.554 (0.48) 0.003 (0.003) 0.143 (0.124)
GCBC-GPT + Ours | 0.587 (0.049) 0.558 (0.483) 0.037 (0.040) 0.307 (0.268)

TABLE D.7: Ablations on dataset size and compositions, with comparisons with GCBC baselines and UVD

please refer to the videos available on our website.

We further extend our OOD setting, which aimed for
unseen initial states in Sec. V-B, also encompass more
diverse intermediate states. Our objective during deployment
is to ensure the agent remains resilient to tasks, even in
the presence of human interference. In Apple—in-Oven
and Fries—and—-Rack tasks, we introduce two more O0OD
scenarios. In the first, we revert the scene by placing the
apple back to its original position, challenging the agent
to recover from this change. In the second, we manually
circumvent an intermediate step. For instance, after the robot
has grasped the bowl of fries, we manually transfer all the
fries to the plate. This alteration means the agent should
subsequently place the bowl directly on the rack without the
need for pouring.

Method Apple-in-Oven Fries-and-Rack
GCBC 0.0 0.2
GCBC + Ours 0.5 0.9

TABLE D.8: Success rate over 10 rollouts with human
interference.

E REAL-WORLD ROBOT EXPERIMENT DETAILS

The robot learning environment is illustrated in Fig. E.4.
We use a 7-DoF Franka robot with a continuous joint-control
action space. A Zed 2 camera is positioned on the table’s
right edge, and only its RGB image stream—excluding depth
information—is employed for data collection and policy
learning. Another Zed mini camera is affixed to the robot’s
wrist. For the Apple-in-Oven task, we utilize the right
view from both cameras, while for the Fries—and—-Rack
and Fold-Cloth tasks, we rely on their left views.

1. Task Descriptions

| EL | # demos
Apple-in-Oven | 197.5 105
Fries—-and-Rack 170.1 110
Fold-Cloth | 246.8 105

TABLE E.9: Real Tasks average episode length (EL) and
the number of demos (# demos).

We specify the average episode lengths and the number
of demonstrations we used for experiments for each task in

Fig. E.4: Real robot experiments setup.

Tab. E.9. The criteria for successful task completion are as
follows:

e Apple—-in-Oven: pick up the apple on the table;
place the apple in the bowl without tipping it over; push
the bowl into the oven; close the oven door.

e Fries—and-Rack: pour fries onto the plate, ensure
at least half of them are on the plate; place the bowl on
the rack without causing any collisions.

e Fold-Cloth: grasp the corner of the cloth and fold
the cloth in the directions shown in the demonstrated
video multiple times.

During evaluation, we assess the successful completion of
each sub-stage over 20 rollouts to determine the overall
success and completion rates. To evaluate our policy’s
compositional generalization abilities, we introduce unseen
initial states for each task. While the success criteria remain
consistent with prior assessments, the initial step has been
pre-completed by humans. The extended O0OD setting, which
includes human interference in intermediate states, is detailed
in Appendix 2..

2. Training and evaluation details

UVD in training: As with our simulation experiments, we
preprocess all the demos using UVD. The behavior cloning
policy further incorporates the view from the wrist camera
besides the view from the side camera and decomposed



Fig. E.5: Raw observations from two different cameras for three tasks. Three (No.1, 3, 5 from the left) are from the
side-view Zed2 camera and the others (No.2, 4, 6) are from Zed mini on the wrist.

subgoals during training. Operating under velocity control,
our robot’s action space encompasses a 6-DoF joint velocity
and a singular dimension of the gripper action (open or
close). Consequently, the policy produces 7D continuous
actions. The robot control frequency is set as 15 Hz.

UVD in evaluating: In the training stage, we save the set
of subgoals and corresponding observations over all demos
in a task. During inference, every time the robot gets a pair
of observations, we retrieve the subgoal that has the nearest
observation (/2 norm over observation embeddings) with the
current one as the current subgoal. Then we concatenate the
current observation with the retrieved subgoal together as
input then get real-time joint velocity action.

Our method frequently results in the development of
more robust policies, enabling recovery actions when ini-
tial attempts fail. For example, in the failure scenario
of Apple—in-Oven and one of the successful cases in
Fold-Cloth as showcased on our website, the policy opts
for a reattempt, pushing the bowl further if not adequately
placed inside the oven, or re-folding if the cloth’s corner is
not grasped properly. In contrast, such recovery behaviors
are conspicuously absent in the GCBC baselines, further
highlighting its propensity to overfit to IND training setting.
BC Model details: We train our policy on a laptop with RTX
3080 GPU. For both the baseline policy and our method,
we add proprioception to help learning and augment each
training dataset by randomly cropping the input images.
Since we have limited demonstrations in the real world, we
only set MLP size to be [256,256]. Please refer to Tab. E.10
for details.

Hyperparameter Value
GPU Instances RTX 3080 Ti Laptop GPU
MLP Architecture [256, 256]
Non-Linear Activation ReLU
Optimizer AdamW [29]
Gradient Steps 10k
Batch Size 64
Learning Rate le-3
Proprioception Yes
Augmentation Random crop

TABLE E.10: Real robot BC hyperparameters.

F QUALITATIVE SUBGOAL DECOMPOSITION RESULTS

We show decomposition results with UVD on simulation
videos in Fig. F.6 F.7, real robots videos in Fig. F.8, F.9, F.10,
and wild videos in Fig. F.11, F.12, F.13, F.14, F.15. From

the subgoal decomposition results, we can have a clear
overview of the key frames within a video. For instance,
in Fold-Cloth video, UVD precisely catches the picking
and placing key frames for three times.

Fig. F6 FE7 are from our simluation experiments,
Fig. F.8, F.9, F.10 are from real robot experiments. Fig. F.11
video depicts a human opening a cabinet and rearranging
items, while Fig. F.12 video showcases unlocking a computer
in an office. Furthermore, Fig. F.13 demonstrates the process
of opening a drawer and charging a device, and Fig. F.14
illustrates washing and then wiping hands in a bathroom.
Lastly, Fig. F.15 presents activities shot in the kitchen with
relatively longer duration. Based on the analysis of all video
decomposition results, it is evident that UVD extends beyond
robotic settings, proving to be highly effective in household
scenarios captured in human videos.

G LIMITATION AND FUTURE WORKS

While UVD offers the advantage of not necessitating
any task-specific knowledge or training, its efficacy is well-
demonstrated across both simulated and real-robot environ-
ments. However, as we only validate on fully observable
manipulation tasks, direct application to navigation tasks, es-
pecially those embodied tasks involving partial observations,
may not yield intuitive or explainable subgoals (even though
representations are pretrained with temporal objective using
egocentric datasets [31,32,38]).

Looking ahead, we are eager to broaden the applications
of UVD, diving deeper into its capabilities within egocen-
tric scenarios, and even the key-frame extraction for video
understanding and dense video caption tasks. On another
front, while task graphs are widely used in Reset-Free
RL [17,62], acquiring milestones as subgoals is resource-
intensive and lacks scalability. By integrating our off-the-
shelf UVD subgoals into the task-graph, we are interested in
seeing agents that, with minimal resets, can adeptly handle
a wide range of tasks across various sequences and horizons
in the wild.



Embedding Distance

Embedding Distance

Embedding Distance

5 B & 5 B3

Embedding Distance

o B 100
Timesteps

Fig. F.7: Video sequence: rotating bottom burner, rotating top burner, turning on light switch, operating slide cabinet.

/

Embedding Distance

EY 7 100
Timesteps

Fig. F.9: Video sequence: picking a bowl, pour fries out of the bowl, placing the bowl on the rack.

e

Fig. F.11:

Embedding Distance

Video sequence: picking upper white box, placing white box, picking upper black box, closing the cabinet.



200
Timesteps

Fig. F.12: Video sequence: grabing a

o s 10 150 20 250 30 30 400
Timesteps

Fig. F.13: Video sequence: opening a drawer, picking the charger, pluging the charger, turing on the power strip, closing
the drawer partially.

Embedding Distance

0 ;o 0

Fig. F.14: Video sequence: lathering hands, washing hands, turning off the tap, wiping hands with towel, placing back the
cloth.

N
o

o

soujesiqg Buippequiy

. 200 300
timesteps

Fig. F.15: UVD decomposes long video into subgoals. The video sequence demonstrates: opening the microwave, placing
a bowl with rice inside the microwave, closing the microwave, activating the microwave to heat the rice, placing the cutting
board onto its rack, opening the oven, and putting the baking tray on the burner.



[1]

[3]

[4]

[5]

[6]

[7]

[8]

(10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

REFERENCES

P.-L. Bacon, J. Harb, and D. Precup, “The option-critic architecture,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 31,
no. 1, 2017. 2

A. Bagaria and G. Konidaris, “Option discovery using deep skill
chaining,” in International Conference on Learning Representations,
2019. 2

J. Borja-Diaz, O. Mees, G. Kalweit, L. Hermann, J. Boedecker,
and W. Burgard, “Affordance learning from play for sample-efficient
policy learning,” in 2022 International Conference on Robotics and
Automation (ICRA). 1EEE, 2022, pp. 6372-6378. 1, 2

E. Chane-Sane, C. Schmid, and I. Laptev, “Goal-conditioned reinforce-
ment learning with imagined subgoals,” in International Conference
on Machine Learning. PMLR, 2021, pp. 1430-1440. 2

L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin,
P. Abbeel, A. Srinivas, and I. Mordatch, “Decision transformer:
Reinforcement learning via sequence modeling,” Advances in neural
information processing systems, vol. 34, pp. 15084-15097, 2021. 9
J. Co-Reyes, Y. Liu, A. Gupta, B. Eysenbach, P. Abbeel, and S. Levine,
“Self-consistent trajectory autoencoder: Hierarchical reinforcement
learning with trajectory embeddings,” in International conference on
machine learning. PMLR, 2018, pp. 1009-1018. 2

D. Damen, H. Doughty, G. M. Farinella, S. Fidler, A. Furnari,
E. Kazakos, D. Moltisanti, J. Munro, T. Perrett, W. Price, et al.,
“Scaling egocentric vision: The epic-kitchens dataset,” in Proceedings
of the European conference on computer vision (ECCV), 2018, pp.
720-736. 1

M. Deitke, W. Han, A. Herrasti, A. Kembhavi, E. Kolve, R. Mottaghi,
J. Salvador, D. Schwenk, E. VanderBilt, M. Wallingford, L. Weihs,
M. Yatskar, and A. Farhadi, “Robothor: An open simulation-to-real
embodied Al platform,” in 2020 I[EEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2020, Seattle,
WA, USA, June 13-19, 2020. Computer Vision Foundation /
IEEE, 2020, pp. 3161-3171. [Online]. Available: https://openaccess.
thecvf.com/content_CVPR_2020/html/Deitke_RoboTHOR_An_Open_
Simulation-to-Real_LEmbodied -Al_Platform_CVPR_2020_paper.html 3
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in 2009 IEEE
conference on computer vision and pattern recognition. leee, 2009,
pp. 248-255. 8, 9

Y. Ding, C. Florensa, P. Abbeel, and M. Phielipp, “Goal-conditioned
imitation learning,” Advances in neural information processing sys-
tems, vol. 32, 2019. 3

B. Eysenbach, R. R. Salakhutdinov, and S. Levine, “Search on the re-
play buffer: Bridging planning and reinforcement learning,” Advances
in Neural Information Processing Systems, vol. 32, 2019. 2

K. Fang, P. Yin, A. Nair, and S. Levine, “Planning to practice:
Efficient online fine-tuning by composing goals in latent space,” in
2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 1EEE, 2022, pp. 4076-4083. 1, 2

K. Fang, P. Yin, A. Nair, H. R. Walke, G. Yan, and S. Levine,
“Generalization with lossy affordances: Leveraging broad offline data
for learning visuomotor tasks,” in Conference on Robot Learning.
PMLR, 2023, pp. 106-117. 1, 2

D. Ghosh, A. Gupta, A. Reddy, J. Fu, C. Devin, B. Eysenbach, and
S. Levine, “Learning to reach goals via iterated supervised learning,”
arXiv preprint arXiv:1912.06088, 2019. 3

K. Grauman, A. Westbury, E. Byrne, Z. Chavis, A. Furnari, R. Girdhar,
J. Hamburger, H. Jiang, M. Liu, X. Liu, et al., “Ego4d: Around the
world in 3,000 hours of egocentric video,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 18995-19012. |

A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman, “Relay
policy learning: Solving long-horizon tasks via imitation and rein-
forcement learning,” arXiv preprint arXiv:1910.11956, 2019. 2, 4,
5

A. Gupta, J. Yu, T. Z. Zhao, V. Kumar, A. Rovinsky, K. Xu, T. Devlin,
and S. Levine, “Reset-free reinforcement learning via multi-task
learning: Learning dexterous manipulation behaviors without human
intervention,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA). 1EEE, 2021, pp. 6664-6671. 13

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770-778. 8

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

M. Heo, Y. Lee, D. Lee, and J. J. Lim, “Furniturebench: Reproducible
real-world benchmark for long-horizon complex manipulation,” arXiv
preprint arXiv:2305.12821, 2023. 2

D.-A. Huang, S. Nair, D. Xu, Y. Zhu, A. Garg, L. Fei-Fei, S. Savarese,
and J. C. Niebles, “Neural task graphs: Generalizing to unseen tasks
from a single video demonstration,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp.
8565-8574. 1, 2

S. James and A. J. Davison, “Q-attention: Enabling efficient learning
for vision-based robotic manipulation,” IEEE Robotics and Automation
Letters, vol. 7, no. 2, pp. 16121619, 2022. 1, 2

D. Jayaraman, F. Ebert, A. A. Efros, and S. Levine, “Time-agnostic
prediction: Predicting predictable video frames,” ICLR, 2019. 2

A. Karpathy, “nanogpt: The simplest, fastest repository for
training/finetuning medium-sized gpts.” 2023. [Online]. Available:
https://github.com/karpathy/nanoGPT 9

A. Khandelwal, L. Weihs, R. Mottaghi, and A. Kembhavi, “Simple
but effective: Clip embeddings for embodied ai,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 14829-14838. |

P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan, “Supervised contrastive learn-
ing,” Advances in Neural Information Processing Systems, vol. 33, pp.
18661-18 673, 2020. 5

Y. Lee, E. S. Hu, and J. J. Lim, “Ikea furniture assembly environment
for long-horizon complex manipulation tasks,” in 2021 ieee interna-

tional conference on robotics and automation (icra). IEEE, 2021,
pp. 6343-6349. 2
Y. Lee, A. Szot, S.-H. Sun, and J. J. Lim, “Generalizable

imitation learning from observation via inferring goal proximity,” in
Advances in Neural Information Processing Systems, A. Beygelzimer,
Y. Dauphin, P. Liang, and J. W. Vaughan, Eds., 2021. [Online].
Available: https://openreview.net/forum?id=Ip9foO8AFoD 10

Y. Li, T. Gao, J. Yang, H. Xu, and Y. Wu, “Phasic self-imitative
reduction for sparse-reward goal-conditioned reinforcement learning,”
in International Conference on Machine Learning. PMLR, 2022, pp.
12765-12781. 10

I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
arXiv preprint arXiv:1711.05101, 2017. 11, 13

C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine,
and P. Sermanet, “Learning latent plans from play,” in Conference on
robot learning. PMLR, 2020, pp. 1113-1132. 5

Y. J. Ma, W. Liang, V. Som, V. Kumar, A. Zhang, O. Bastani, and
D. Jayaraman, “Liv: Language-image representations and rewards for
robotic control,” arXiv preprint arXiv:2306.00958, 2023. 1, 3, 4, 5,
13

Y. J. Ma, S. Sodhani, D. Jayaraman, O. Bastani, V. Kumar, and
A. Zhang, “Vip: Towards universal visual reward and representa-
tion via value-implicit pre-training,” arXiv preprint arXiv:2210.00030,
2022. 1,2,3,4,5,8,9, 10, 13

A. Majumdar, K. Yadav, S. Arnaud, Y. J. Ma, C. Chen, S. Silwal,
A. Jain, V.-P. Berges, P. Abbeel, J. Malik, et al., “Where are we in
the search for an artificial visual cortex for embodied intelligence?”
arXiv preprint arXiv:2303.18240, 2023. |

A. Mandlekar, D. Xu, R. Martin-Martin, S. Savarese, and L. Fei-
Fei, “Learning to generalize across long-horizon tasks from human
demonstrations,” arXiv preprint arXiv:2003.06085, 2020. 1, 2

O. Nachum, S. Gu, H. Lee, and S. Levine, “Near-optimal representa-
tion learning for hierarchical reinforcement learning,” arXiv preprint
arXiv:1810.01257, 2018. 2

O. Nachum, S. S. Gu, H. Lee, and S. Levine, “Data-efficient hi-
erarchical reinforcement learning,” Advances in neural information
processing systems, vol. 31, 2018. 2

S. Nair and C. Finn, “Hierarchical foresight: Self-supervised learning
of long-horizon tasks via visual subgoal generation,” arXiv preprint
arXiv:1909.05829, 2019. 1, 2

S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta, “R3m: A
universal visual representation for robot manipulation,” arXiv preprint
arXiv:2203.12601, 2022. 1, 3, 4,5, 8,9, 10, 13

S. Nasiriany, V. Pong, S. Lin, and S. Levine, “Planning with goal-
conditioned policies,” Advances in Neural Information Processing
Systems, vol. 32, 2019. 2

A.Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in Icml,
vol. 99, 1999, pp. 278-287. 10



[41]

[42]

[43]

[44]

[45]

[40]

(471

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khali-
dov, P. Fernandez, D. Haziza, F. Massa, A. ElI-Nouby, et al., “Dinov2:
Learning robust visual features without supervision,” arXiv preprint
arXiv:2304.07193, 2023. 4, 5

S. Parisi, A. Rajeswaran, S. Purushwalkam, and A. Gupta, “The
unsurprising effectiveness of pre-trained vision models for control,”
arXiv preprint arXiv:2203.03580, 2022. |

K. Pertsch, O. Rybkin, F. Ebert, S. Zhou, D. Jayaraman, C. Finn,
and S. Levine, “Long-horizon visual planning with goal-conditioned
hierarchical predictors,” Advances in Neural Information Processing
Systems, vol. 33, pp. 17321-17 333, 2020. 1, 2

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, et al., “Learning transferable
visual models from natural language supervision,” in International
Conference on Machine Learning. ~PMLR, 2021, pp. 8748-8763.
4, 8

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2019. 5

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv  preprint
arXiv:1707.06347, 2017. 5, 10

P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal,
S. Levine, and G. Brain, “Time-contrastive networks: Self-supervised
learning from video,” in 2018 IEEE international conference on
robotics and automation (ICRA). 1EEE, 2018, pp. 1134-1141. 2

N. M. Shafiullah, Z. Cui, A. A. Altanzaya, and L. Pinto, “Behavior
transformers: Cloning £ modes with one stone,” Advances in neural
information processing systems, vol. 35, pp. 22955-22 968, 2022. 9
L. X. Shi, A. Sharma, T. Z. Zhao, and C. Finn, “Waypoint-
based imitation learning for robotic manipulation,” arXiv preprint
arXiv:2307.14326, 2023. 1, 2

K. Shiarlis, M. Wulfmeier, S. Salter, S. Whiteson, and I. Posner, “Taco:
Learning task decomposition via temporal alignment for control,” in
International Conference on Machine Learning. PMLR, 2018, pp.
4654-4663. 1, 2

M. Shridhar, L. Manuelli, and D. Fox, “Perceiver-actor: A multi-
task transformer for robotic manipulation,” in Conference on Robot
Learning. PMLR, 2023, pp. 785-799. 1, 2

K. P. Singh, L. Weihs, A. Herrasti, J. Choi, A. Kembhavi, and
R. Mottaghi, “Ask4help: Learning to leverage an expert for embodied
tasks,” Advances in Neural Information Processing Systems, vol. 35,
pp. 16221-16232, 2022. 11

J. Su, Y. Lu, S. Pan, A. Murtadha, B. Wen, and Y. Liu, “Roformer:
Enhanced transformer with rotary position embedding,” arXiv preprint
arXiv:2104.09864, 2021. 9

R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning,”
Artificial intelligence, vol. 112, no. 1-2, pp. 181-211, 1999. 2

H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image
processing and reconstruction,” IEEE Transactions on image process-
ing, vol. 16, no. 2, pp. 349-366, 2007. &

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023. 9

L. Weihs, M. Deitke, A. Kembhavi, and R. Mottaghi, “Visual
room rearrangement,” in [EEE Conference on Computer Vision
and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021.
Computer Vision Foundation / IEEE, 2021, pp. 5922-5931. [On-
line]. Available: https://openaccess.thecvf.com/content/CVPR2021/
html/Weihs_Visual_ Room_Rearrangement_ CVPR_2021 _paper.html 3
L. Weihs, J. Salvador, K. Kotar, U. Jain, K.-H. Zeng, R. Mottaghi,
and A. Kembhavi, “Allenact: A framework for embodied ai research,”
arXiv preprint arXiv:2008.12760, 2020. 10

E. Wijmans, A. Kadian, A. Morcos, S. Lee, I. Essa, D. Parikh,
M. Savva, and D. Batra, “DD-PPO: learning near-perfect pointgoal
navigators from 2.5 billion frames,” in 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. [Online]. Available:
https://openreview.net/forum?id=H1gX8C4YPr 3

T. Xiao, I. Radosavovic, T. Darrell, and J. Malik, “Masked visual pre-
training for motor control,” arXiv preprint arXiv:2203.06173, 2022.
1

D. Xu, S. Nair, Y. Zhu, J. Gao, A. Garg, L. Fei-Fei, and S. Savarese,
“Neural task programming: Learning to generalize across hierarchical

[62]

[63]

[64]

[65]

tasks,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). 1EEE, 2018, pp. 3795-3802. 1, 2

K. Xu, Z. Hu, R. Doshi, A. Rovinsky, V. Kumar, A. Gupta, and
S. Levine, “Dexterous manipulation from images: Autonomous real-
world rl via substep guidance,” in 2023 IEEE International Conference
on Robotics and Automation (ICRA). 1IEEE, 2023, pp. 5938-5945.
13

B. Zhang and R. Sennrich, “Root Mean Square Layer Normalization,”
in Advances in Neural Information Processing Systems 32, Vancouver,
Canada, 2019. [Online]. Available: https://openreview.net/references/
pdf?id=S1qBAf6rr 9, 11

L. Zhang, G. Yang, and B. C. Stadie, “World model as a graph:
Learning latent landmarks for planning,” in International Conference
on Machine Learning. PMLR, 2021, pp. 12611-12620. 2

Z. Zhang and L. Weihs, “When learning is out of reach, reset:
Generalization in autonomous visuomotor reinforcement learning,”
arXiv preprint arXiv:2303.17600, 2023. 10, 11



